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Lesson 9



Tentative list of topics to cover:

* From statistics and linear algebra to power spectral densities

« Historical perspectives and examples in many areas of
physics

« Correlation functions in classical optics (field-field; intensity-
intensity; field-intensity) part iii

« Optical Cavity QED

« Correlation functions, quantum examples

« Correlations and conditional dynamics for control

« Correlations of the field and intensity

* From Cavity QED to waveguide QED.



Correlation functions tell us something
about the fluctuations.

Correlations have classical bounds.
They are conditional measurements.
Can we use them to measure the field

associated with a FLUCTUATION of one
photon?



Mach Zehnder Interferometer \Wave-Wave Correlation
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Basis of Fourier Transform Spectroscopy



Hanbury Brown and Twiss Intensity-Intensity Correlations
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Intensity correlation function measurements:
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Gives the probability of detecting a photon
at time t + T given that one was detected at
time t. This is a conditional measurement:
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Correlation function; Conditional measurement.
Detect a photon: get a conditional state.
The system has to have at least two photons.
Do we have enough signal to noise ratio?
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How to correlate fields
and intensities?



Detection of the field: Homodyne.

Conditional Measurement: Only measure
when we get a photon click.

Source: Cavity QED
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The Intensity-Field correlator.
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Condition on a Click
Measure the correlation function of the Intensity and
the Field:
<I(t) E(t+7)>
Normalized form:
g2 ((1)=h o(t) = <E(1)>, /<E>

From Cauchy Schwartz inequalities:
0< 7 (0)-1<2

y(2) = 1| <[y (0) -1
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Photocurrent average with random conditioning
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Conditional photocurrent with no atoms in the cavity.
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After 1 average, pp~200 mV



Averave photocurrent into 50 Q2 (mV)
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Averave photocurrent into 50 Q (mV)
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Averave photocurrent into 50 QQ (mV)
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After 30,000 averages



Averave photocurrent into 50 Q (mV)
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After 65,000 averages, noise pp~1mV



AC Photocurrent (LA)

Flip the phase of the Mach-Zehnder by 146°
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Monte Carlo simulations for weak excitation:
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This is the conditional evolution of the field of
a fraction of a photon [B(t)] from the
correlation function.
hy(t) = <E(1)>./<E>

The conditional field prepared by the click is:
A(1)[0> + B(t)[1> with A(t) = 1 and B(t) << 1
We measure the field of a fraction of a photon!

Fluctuations are very important.



‘ Conditional evolution of the state one atom ‘
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For N non-interacting atoms
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g2 () =1+ AF (17)

where F is a decaying oscillation,
F=e PTcos(Qy7)+(B/Qg)sin(Qy7)]. (18)

with f=(k+ 7y, )/2 representing the average decay rate and
(), the vacuum Rabi frequency in the low intensity limit:

5 (ﬁK_'h)z
QOZ g’N_‘ 4 .

The amplitude of the decaying oscillations 1s given by

4CiN
A=—
(1+v, /k)(1+2CN)—2C;"




This is the conditional evolution of the field of
a fraction of a photon [B(t)] from the
correlation function.
hy(t) = <E(1)>./<E>

The conditional field prepared by the click is:
A(1)[0> + B(t)[1> with A(t) = 1 and B(t) << 1
We measure the field of a fraction of a photon!

Fluctuations are very important.



Regression of the field to steady state after the
detection of a photon.
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Detection of the Squeezing spectrum with a
balanced homodyne detector (BHD).
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The fluctuations of the electromagnetic field are
measured by the spectrum of squeezing. Look at the
noise spectrum of the photocurrent.

S(v,0)=4F T cos(27zvr)[h_0 (r)—1]dr,

F is the photon flux into the correlator.



Spectrum of Squeezing from the F. T. of g(32)t)=hy(z)
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Monte Carlo simulations of the wave-particle correlation
and the spectrum of squeezing in the low intensity limit
for an atomic beam.
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Single quantum trajectories simulation of cavity QED
system with spontaneous emission.
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(i) Spectrum of squeezing obtained from the averaged (ii) hy(7)
correlation function that shows the effects of spontaneous
emission.
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Other systems



Twin photons from down conversion



Quantum State Reconstruction of the Single-Photon Fock State

A.1. Lvovsky,* H. Hansen, T. Aichele, O. Benson, J. Mlynek," and S. Schiller*

Phys. Rev. Lett. 87, 050402 (2001)
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FIG. 4. Experimental results: (a) raw quantum noise data for
the vacuum (left) and Fock (right) states along with their his-
tograms corresponding to the phase-randomized marginal distri-
butions; (b) diagonal elements of the density matrix of the state
measured; (c) reconstructed WF which is negative near the ori-
gin point. The measurement efficiency i1s 55%.



Optical Parametric Oscillator
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Calculation of hy(t) in an OPO well below threshold
with the classical bounds




Maximum of hy(t) in an OPO below threshold

20 1

10

—
I

O b
>_“O

>

<

40 f

20 T

0.0 0.2 0.4 0.6 0.8 1.0



Anti-squeezed

o | Vacuum e

- Squeezed

Relative Noise Power [dB]

6 8 10 20 40 60 80100 170
Frequency [MHz]

FIG. 6: High bandwidth squeezing spectrum. Squeezing (bottom
trace) and anti-squeezing (top trace) are shown relative to the vac-
uum noise variance. The measurements were performed from 5 MHz

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel,
Phys. Rev. A 81, 013814.



Probabiity density
Probability density

FIG. 3: Wigner function of the squeezed vacuum state produced
by our OPO. The projections (filled curves) onto the two quadratures
yield the gaussian probability distributions with variances of -11.5 dB
and 16 dB relative to the projections belonging to a pure vacuum state
(dotted curves).



Single ion resonance fluorescence

week ending

PRL 102, 183601 (2009) PHYSICAL REVIEW LETTERS 8 MAY 2009

Intensity-Field Correlation of Single-Atom Resonance Fluorescence

S. Gerber,! D. Rotter,! L. Slodi¢ka,' J. Eschner,"* H. J. Carmichael,3 and R. Blatt'*
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« The wave-particle correlation hy(t)=g®2),(t)
measures the conditional dynamics of the
electromagnetic field. The Spectrum of Squeezing
S(€Q2) and hy(t) are Fourier Transforms of each other.

« Many applications in many other problems of
guantum optics and of optics in general:
microscopy, degaussification, weak measurements,
guantum feedback.

« Possibility of a tomographic reconstruction of the
dynamical evolution of the electromagnetic field
state.
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